UG环球网址:Mellin调动的液晶表现屏表现缺陷检测

新2备用网址/2020-06-21/ 分类:科技/阅读:

针对液晶表现屏(LCD)表现缺陷检测中待测图像呈现的平移和旋转导致误检率过高, 传统人工检测遵从低、漏检率高, 以及图像配准精度对缺陷检测准确率的影响等题目, 提出一种基于Fourier-Mellin调动的LCD表现缺陷检测要领。根基道理是操作Fourier-Mellin调动对尺度图像和待测图像举办粗配准, 通过加快妥当特性/标准稳固特性调动(SURF/SIFT)算法举办细配准, 对尺度图像和配准后的图像举办加权均匀融合获得终极的配准图, 末了操作局部自顺应阈值支解和差影法检测缺陷, 并标注缺陷的位置及信息。尝试功效表白, 提出的要领对平移和旋转的妥当性好, 可以或许有用地检测出LCD表现缺陷, 检测准确率到达98.667%。

要害词

Abstract

Aiming at the high false detection rate due to the image translation and rotation, the low efficiency and low reliability of manual inspection, and the impact of image registration precision on the detection accuracy, a method based on Fourier-Mellin transform for liquid crystal display (LCD) defect detection is proposed. The basic fundamental of the method is as follows. The rough matching based on the Fourier-Mellin transform is performed between the detected image and the standard image firstly, and then the fine matching based on the speed-up robust features/scale-invariant feature transform (SURF/SIFT) algorithm is performed. The weighted average fusion is used for the standard image and the image after registration to obtain the final image. The LCD defects are inspected by local adaptive threshold segmentation and subtraction method, with the defect location and information marked. The experimental results show that the proposed method is robust to image translation and rotation, and can effectively detect the LCD defects with an accuracy rate up to 98.667%.

增补资料

中图分类号:TP391

DOI:10.3788/lop54.121502

所属栏目:呆板视觉

收稿日期:2017-06-01

修改稿日期:2017-07-07

收集出书日期:--

作者单元    点击查看

朱炳斐:南京理工大学电子工程与光电技能学院, 江苏 南京 210094
陈文建:南京理工大学电子工程与光电技能学院, 江苏 南京 210094
李武森:南京理工大学电子工程与光电技能学院, 江苏 南京 210094
张峻乾:南京理工大学电子工程与光电技能学院, 江苏 南京 210094

接洽人作者:陈文建(chenwj@njust.edu.cn)

备注:朱炳斐(1993—), 女, 硕士研究生, 首要从事呆板视觉技能与缺陷检测方面的研究。E-mail: zhubf@njust.edu.cn

【1】Lu R S, Shi Y Q, Li Q, et al. AOI techniques for surface defect inspection[J]. Applied Mechanics and Materials, 2010, 36: 297-302.

【2】Gan Y, Zhao Q. An effective defect inspection method for LCD using active contour model[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(9): 2438-2445.

【3】Yun J W, Gu H, Kim D H, et al. Automatic mura inspection using the principal component analysis for the TFT-LCD panel[C]. 1st IEEE International Conference on Consumer Electronics-Taipei, 2014: 109-110.

【4】Fan S, Chuang Y. Automatic detection of Mura defect in TFT-LCD based on regression diagnostics[J]. Pattern Recognition Letters, 2010, 31(5): 2397-2404.

【5】Yang Y B, Li N, Zhang Y. Automatic TFT-LCD mura detection based on image reconstruction and processing[C]. IEEE 3rd International Conference on Consumer Electronics-Berlin, 2013: 240-244.

【6】Mahesh, Subramanyam M V. Automatic feature based image registration using SIFT algorithm[C]. 2012 3rd International Conference on Computing Communication and Networking Technologies-Coimbatore, 2012: 13252223.

【7】Wang S H, You H J, Fu K. BFSIFT: a novel method to find feature matches for SAR image registration[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 649-653.

【8】Alcantarilla P F, Bartoli A, Davison A J. KAZE features[C]. IEEE IAS Annual Meeting, 2012: 214-227.

【9】Wang B, Zhang J, Lu L, et al. A uniform SIFT-like algorithm for SAR image registration[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1426-1430.

【10】Huang Yuan, Da Feipeng, Tao Haiji. An automatic registration algorithm for point cloud based on feature extraction[J]. Chinese J Lasers, 2015, 42(3): 0308002.
黄源, 达飞鹏, 陶海跻. 一种基于特性提取的点云主动配准算法[J]. 中国激光, 2015, 42(3): 0308002.

【11】Wang Canjin, Sun Tao, Wang Rui, et al. Color image registration based on colored binary local invariant descriptor[J]. Chinese J Lasers, 2015, 42(1): 0109001.
王灿进, 孙涛, 王锐, 等. 基于彩色二进制局部稳固特性的图像配准[J]. 中国激光, 2015, 42(1): 0109001.

【12】Yang Sa, Xia Minghua, Zheng Zhishuo. Medical image registration algorithm based on polynomial deterministic matrix and SIFT transform[J]. Laser & Optoelectronics Progress, 2016, 53(8): 081002.
杨飒, 夏明华, 郑志硕. 基于多项式确定性矩阵的SIFT医学图像配准算法[J]. 激光与光电子学盼望, 2016, 53(8): 081002.

【13】Zeng Fanxuan, Li Liang, Diao Xinpeng. Iterative closest point algorithm registration based on curvature features[J].Laser & Optoelectronics Progress, 2017, 54(1): 011003.
曾繁轩, 李亮, 刁鑫鹏. 基于曲率特性的迭代近来点算法配准研究[J]. 激光与光电子学盼望, 2017, 54(1): 011003.

广告 330*360
广告 330*360

热门文章

HOT NEWS
  • 周榜
  • 月榜
阳光在线官网
微信二维码扫一扫
关注微信公众号
新闻自媒体 Copyright © 2002-2019 阳光在线官网 版权所有
二维码
意见反馈 二维码